回观撒下花籽,五彩缤纷一片——记数学家杨必成: 疫情三年科研成果丰硕

2023年春,肆虐在祖国大地三年的新冠疫情终于划上了句号。回望这段艰难的时光,杨必成教授及其科研团队成员逆境而上,坚持组织好课题研究,日夜笔耕奔忙,终于取得骄人成绩:在已发表的69篇合作论文中,有51篇为SCI收录,2篇在权威期刊,还出版了5本专著,诚可谓硕果累累! 2021年9月18日,杨必成应邀参加了在“北京会议中心”举行的“第十九届中国科学家(国际)论坛”,荣获大会颁发《“十四五”科技强国创新驱动领军人物》证书及奖牌; 同年10月19日,《我是科学人》栏目视频:《杨必成:执于探微,不负数学一生》获挂《学习强国》网站,至今已有超20000人次的阅读记录;2022年10月10日,杨必成光荣入册美国斯坦福大学版“全球前2%顶尖科学家”的“终身影响力排行版(1960-2021年)”榜单。

一、发表成果(论文69篇,专著5本):

(1)英文论文(51篇,SCI收录):

Bicheng Yang, Shanhe Wu and Jianquan Liao. On a new extended Hardy-Hilbert’s inequality with parameters. Mathematics, 2020,8,73; doi:10.3390/ math8010073. (中译题目《关于一个推广的含参数Hardy-Hilbert不等式》)

Bing He and Bicheng Yang. A Mulholland-type inequality in the whole plane with multi parameters. Journal of King Saud University–Science , 2020, 32, 245-250. (中译题目《一个全平面含参数的Mulholland型不等式》)

Hongmin Mo and Bicheng Yang. On a new Hilbert-type integral inequality involving the upper limit functions. Journal of Inequalities and Applications (2020) 2020:5. (中译题目《一个新的涉及可变上限函数的Hilbert型积分不等式》)

Xing Shou Huang, Ricai Luo and Bicheng Yang. On a new extended half-discrete Hilbert’s inequality involving partial sums. Journal of Inequalities and Applications (2020) 2020:16.(中译题目《关于一个新的推广的涉及部分和的半离散Hilbert不等式》)

Bicheng Yang, Shanhe Wu and Qian Chen, On an extended Hardy-Littlewood -Polya’s inequality. AIMS Mathematics, 2020, 5(2), 1550-1561.(中译题目《关于一个推广的Hardy-Littlewood-Polya不等式》)

Jianqua Liao, Shanhe Wu and Bicheng Yang. On a new half-discrete Hilbert-type inequality involving the variable upper limit integral and the partial sum. Mathematics, 2020,8,229; doi:10.3390/math8020229. (中译题目《关于一个新的涉及可变上限积分与部分和的半离散Hilbert型不等式》)

Bicheng Yang, Meifa Huang, and Yanru Zhong. Equivalent statements of a more accurate extended Mulholland’s inequality with a best possible constant factor. Mathematical Inequalities and Applications , 2020, 23(1),231-244.(中译题目《一个较为精确推广的具有最佳常数因子的Mulholland不等式的等价描述》)

Bicheng Yang, Shanhe Wu and Aizhen Wang. A new Hilbert-type inequality with positive homogeneous kernel and its equivalent form. Symmetric , 2020, 12, 342; doi:10.3390/ sym12030342 (中译题目《一个新的具有正齐次核的Hilbert型积分不等式及其等价式》)9.Zhenxiao Huang, Yanping Shi and Bicheng Yang. On a reverse extended Hardy-Hilbert’s inequality. Journal of Inequalities and Applications (2020), 2020:68. (中译题目《关于一个逆向推广的Hardy-Hilbert不等式》)

10.M. Th. Rassias, B.C. Yang and A. Raigorodskii. On Hardy-type integral inequality in the whole plane related to the extended Hurwitz-zeta fanction. Journal of Inequalities and Applications (2020), 2020: 94. (中译题目《一个全平面联系推广的Hurwitz-zeta 函数的Hardy型积分不等式》)

11.Jianqua Liao, Yong Hong and Bicheng Yang. Equivalent conditions of a Hilbert-type multiple integral inequality holding. Journal of Function Spaces, Volume 2020, Article ID 3050952, 6 pages. (中译题目《一个Hilbert型多重积分不等式存在的等价条件》)

12.Aizhen Wang and Bicheng Yang. Equivalent property of a more accurate half-discrete Hilbert’s Inequality . Journal of Applied Analysis and Computation, Volume 10, Number 3, 2020, 920-934. (中译题目《一个较为精确的半离散Hilbert不等式的等价性质》)

13.Yong Hong, Jianqua Liao, Bicheng Yang and Qiang Chen. A class of Hilbert-type multiple integral inequalities with the kernel of generalized homogeneous function and its applications. Journal of Inequalities and Applications (2020), 2020: 140. (中译题目《一类具有一般齐次核函数的Hilbert型多重积分不等式及应用》)

14. Bicheng Yang, Shanhe Wu and Qiang Chen. A new extension of Hardy-Hilbert’s inequality containing kernel of double power functions. Mathematics, 2020,8, 339; doi:10.3390/ math8060894. (中译题目《一个新的推广的包含两个幂函数的Hardy-Hilbert不等式》)

15. M. Th. Rassias, B.C. Yang and A. Raigorodskii. On the reverse Hardy-type integral inequalities in the whole plane with the extended Riemann-Zeta function. Journal of Mathematics Inequalities, 2020, 14(2) : 525 -546. (中译题目《一个逆向的全平面联系推广的Riemann-Zeta函数的Hilbert型积分不等式》)

16. Bicheng Yang and Yanru Zhong. On a reverse Hardy-Littlewood-Polay’s inequality. Journal of Applied Analysis and Computation, Volume 10, Number 5, 2020, 2220-2232. (中译题目《一个逆向的Hardy-Littlewood-Polay不等式》)

17. Weiliang Wu and Bicheng Yang. A few equivalent statements of a Hilbert-type integral inequality with the Reimann-zeta function. Journal of Applied Analysis and Computation, Volume 10, Number 6, 2020, 2400-2417.(中译题目《一个联系Riemann-Zeta函数的Hilbert型积分不等式的几个等价陈述》)

18. Zhaohui Gu and Bicheng Yang. On an extended Hardy-Hilbert’s inequality in the whole plane. Journal of Applied Analysis and Computation, Volume 10, Number 6, 2020, 2619-2630.(中译题目《一个全平面联系推广的Hardy-Hilbert不等式》)

19. Qiang Chen and Bicheng Yang. A reverse Hardy–Hilbert-type integral inequality involving one derivative function. Journal of Inequalities and Applications (2020), 2020: 259. (中译题目《一个逆向的涉及导函数的Hardy-Hilbert积分不等式》)

20. Qiang Chen and Bicheng Yang. On a parametric more accurate Hilbert-type inequality. Journal of Mathematical Inequalities, 2020, 14(4) : 1135 -1149. (中译题目《关于一个较为精确的参量化Hilbert型不等式》)

21.Aizhen Wang and Bicheng Yang. Equivalent statements of a Hilbert-type integral inequality with the extended Hurwitz zeta function in the whole plane. Journal of Mathematical Inequalities, 2020, 14(4) : 1039 -1054.(中译题目《一个联系推广的Hurwitz zeta函数的全平面Hilbert型不等式的等价陈述》)

22. M. Th. Rassias, B.C. Yang and A. Raigorodskii. On a more accurate reverse Hilbert-type inequality in the whole plane. Journal of Mathematical Inequalities, 2020, 14(4) : 1359 -1374.(中译题目《一个较为精确逆向的全平面Hilbert型不等式》)

23. Xingshou Huang and Bicheng Yang.On a more accurate Hilbert-type inequality in the whole plane with the general homogeneous kernel. Journal of Inequalities and Applications (2021), 2021: 10. (中译题目《一个较为精确的全平面Hilbert型不等式》)

24. Michael Th. Rassias, Bicheng Yang and Andrei Raigorodsii. A Hilbert-type integral inequality in the whole plane related to the Arc tangent function. Symmetry 2021, 13, 351. (中译题目《一个联系反正切函数的全平面Hilbert型积分不等式》)

25. Ricai Luo, Bicheng Yang and Xingshou Huang, On a reverse Mulholland-type inequality in the whole plane with general homogeneous kernel. Journal of Inequalities and Applications (2021), 2021: 46. (中译题目《一个具有一般齐次核的全平面逆向Mulholland 不等式》)

26. Qiliang Huang, Bicheng Yang. On a more accurate Hardy-Hilbert’s inequality in the whole plane. Int. J. Nonlinear Anal. Appl. 12 (2021) No. 1, 1167-1179. (中译题目《一个较为精确的全平面Hardy-Hilbert 不等式》)

27. Jianghua Zhong and Bicheng Yang. On a multiple Hilbert-type integral inequality involving the upper limit functions. Journal of Inequalities and Applications (2021), 2021: 17.(中译题目《一个多重的联系可变上限函数的Hilbert型积分不等式》)

28. M. Th. Rassias, B. C. Yang and A. Raigorodskii. Equivalent properties of two kinds of Hardy-type integral inequalities. Symmetry 2021, 13, 1006. (中译题目《两类Hardy型积分 不等式的等价性质》)

29. Bing He , Yong Hong, Zhen Li and Bicheng Yang . Necessary and sufficient conditions and optimal constant factors for the validity of multiple integral half-discrete Hilbert type inequalities with a class of quasi-homogeneous kernels. Journal of Applied Analysis and Computation, 2021,11(1), 521-531. (中译题目《联系多重半离散Hilbert型积分不等式具有最佳常数因子的等价条件》)

30. Bicheng Yang, Shanhe Wu and Aizhen Wang. A new reverse Mulholland-type inequality with multi-parameters. AIMS Mathematics, 2021, 6(9), 9939-9954. (中译题目:《一个联系多参数的新的逆向Mulholland 不等式》)

31.Michael Th. Rassias, Bicheng Yang , Gerasimos C. Meletiou. A more accurate half-discrete Hilbert-type inequality in the whole plane and the reverses. Ann. Funct. Anal. (2021) 12:50. (中译题目:《一个较为精确的全平面半离散Hilbert 型不等式及其逆式》)

32. Qiang Chen and Bicheng Yang. On two kinds of the reverse half-discrete Mulholland -type inequalities involving higher-order derivative function. Journal of Inequalities and Applications (2021), 2021: 138. (中译题目:《关于两类涉及高阶导函数的半离散逆向的Mulholland 型不等式》)

33. Xianyong Huang, Shanhe Wu and Bicheng Yang. A more accurate half-discrete Hilbert-type inequality involving one upper limit function and one partial sums. Symmetric, 2021,13, 154。(中译题目:《一个涉及高阶可变上限函数及部分和的较为精确半离散Hilbert 型不等式》)

34. Bicheng Yang , Michael Th. Rassias, and Andrei Raigorodskii. On an extension of a Hardy -Hilbert-type inequality with multi-parameters. Mathematics, 2021, 9, 2432. (中译题目:《关于一个具有多参数的推广的Hardy-Hilbert 型不等式》)

35. Bicheng Yang, Yanru Zhong and Aizhen Wang. On a new Hilbert-type inequality in the whole plane with the general homogeneous kernel. Journal of Applied Analysis and Computation, 2021, 11(5): 2583– 2600. (中译题目:《一个新的具有一般齐次核的全平面Hilbert 型不等式》)

36. Bicheng Yang, Shanhe Wu and Xingshou Huang. A Hardy–Hilbert-type inequality involving parameters composed of a pair of weight coefficients with their sums. Mathematics 2021, 9, 2950. (中译题目:《一个涉及参数组合一对和的权系数的Hardy-Hilbert 型不等式》)

37. Zhaohui Gu and Bicheng Yang. An extended Hardy-Hilbert’s inequality with parameters and applications. Journal of Mathematical Inequalities, 2021, 15(4) : 1375 -1389. (中译题目:《一个联系参数推广的Hardy-Hilbert不等式及应用》)

37. Bing He, Yanru Zhong and Bicheng Yang. On a more accurate Hilbert-type Inequality involving the partial sums. Journal of Mathematical Inequalities, 2021, 15(4) : 1647 -1662. (中译题目:《一个涉及部分和的较为精确的Hilbert 型不等式》)

38. Jianquan Liao, Shanhe Wu , and Bicheng Yang. A multi parameter Hardy –Hilbert-type inequality containing partial sums as the terms of series. Journal of Mathematics, Volume 2021, Article ID 5264623, 11 pages. (中译题目:《一个包含部分和为级数项的多参数Hilbert 型不等式》)

39. Xianyong Huang and Bicheng Yang. On a more accurate half-discrete Mulholland-type inequality involving one multiple upper limit function. Journal of Function Spaces Volume 2021, Article ID 6970158, 9 pages. (中译题目:《一个涉及多重可变上限的较为精确半离散Mulholland型不等式》)

40. Michael Th. Rassias, Bicheng Yang and Andrei Raigorodskii. A new Hardy –Mulholland-type inequality with a mixed kernel. Advances in Operator Theory (2021) 6:27. (中译题目:《一个新的涉及混合核的Hardy-Mulholland型不等式》)

41. Xianyong Huang , Shanhe Wu and Bicheng Yang. A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums. AIMS Mathematics, 2022,7(4): 6294–6310. DOI: 10.3934/math.2022350.(中译题目:《一个涉及改进的权系数与部分和的Hardy-Hilbert不等式》)

42. Jianhua Zhong, Bicheng Yang and Qiang Chen. A more accurate half-discrete Hilbert-type inequality involving one higher-order derivative function. Journal of Applied Analysis and Computation Volume 12, Number 1, 2022, 378–391.(中译题目:《一个较为精确的涉及一个高阶导函数的半离散Hilbert型不等式》)

43. Aizhen Wang and Bicheng Yang. A reverse more accurate Hardy-Hilbert’s inequality. Journal of Applied Analysis and Computation Volume 12, Number 2, 2022, 720–735. (中译题目:《一个较为精确逆向的Hardy-Hilbert不等式》)

Aizhen Wang, Yong Hong and Bicheng Yang. On a new half-discrete

Hilbert-type inequality with the multiple upper limit function and the partial sums. Journal of Applied Analysis and Computation, Volume 12, Number 2, 2022, 814–830.(中译题目:《一个新的涉及多重可变上限函数及部分和的半离散Hilbert型不等式》)

45. Bicheng Yang, Shanhe Wu and Xingshou Huang. A reverse Hardy-Hilbert’s inequality involving one partial sum as the terms of double series. Journal of Function Spaces, Volume 2022, Article ID 2175463, 9 pages.(中译题目:《一个逆向的涉及部分和作为重级数项的半离散Hardy-Hilbert不等式》)

46. Xingshou Huang , Bicheng Yang and Ricai Luo. A new reverse Hardy–Hilbert inequality with the power function as intermediate variables. Journal of Inequalities and Applications (2022), 2022: 49. (中译题目:《一个新的含幂函数作为中间变量的Hardy-Hilbert不等式》)

47. M. Th. Rassias, B.C. Yang and A. Raigorodskii. Equivalent conditions of a multiple Hilbert -type integral inequality with the non homogeneous kernel. Rev. Real Acad. Cienc. Exact as Fis. Nat. Ser.A-Mat. (2022) 116:107.(中译题目:《一个含非齐次核的多重Hilbert型积分不等式》)

48. Bicheng Yang , Shanhe Wu and Xingshou Huang. A reverse Hardy–Hilbert’s inequality containing multiple parameters and one partial sum. Mathematics 2022, 10, 2362. https://doi.org/10.3390/math10132362.(中译题目:《一个包含多参数及部分和的逆向Hardy-Hilbert不等式》)

49.B. C. Yang, D. Andrica, O. Bagdasar, and M. Th. Rassias . An equivalent property of a Hilbert-type integral inequality and its applications. Appl. Anal. Discrete Math. 16 (2022), 548-563.(中译题目:《一个Hilbert型积分不等式的等价性质及应用》)

50.Qiang Chen, Yong Hong and Bicheng Yang. A more accurate extended Hardy-Hilbert’s inequality with parameters. Journal of Mathematical Inequalities, 2022, 16(3) : 1075 -1089. (中译题目:《一个较为精确联系参数推广的Hardy-Hilbert不等式》)

F.G Wu, Y. Hong and B.C. Yang. A refined Hardy-Littlewood-Polya inequality and the equivalent forms. Journal of Mathematical inequalities, 16(4)(2022).(中译题目:《一个改进的Hardy-Littlewood-Polya不等式及其等价式》)

(2) 国内论文(14篇,其中权威期刊2篇,核心期刊5篇)

1.廖建全,杨必成.关于一个引入中间变量的一般非齐次核全平面Hilbert型积分不等式,数学学报, 2020,63(1):27-44.(权威期刊)

2.黄启亮,杨必成.具有一般齐次核多维的半离散Hardy-Hilbert型不等式,数学学报, 2020,63(5):427-442.(权威期刊)

3.黄启亮,杨必成.一般齐次核 Hardy-Mulholland 型不等式.浙江大学学报(理),2020,47(3):306-311.

4.辛冬梅,杨必成. 一个较为精确的加强型的半离散Hilbert型不等式.吉林大学 学报(理) , 2020,58(2):225-230.

5.杨必成. Hardy 型积分不等式的等价性质及其应用,广东第二师范学院学报,2020, 40(3): 1-11.

6.杨必成.一个非齐次核较为精确半离散的Hilbert型不等式的等价性质. 广东第二师范学院学报,2020,40(5): 1-9.

7.辛冬梅,杨必成.关于逆向Hilbert型积分不等式的 一组等价陈述.广东第二师范学院学报,2020,40(5): 28-36.

8.杨必成.一个多维逆向的Hilbert型积分不等式的等价陈述.东莞理工学院学报,2021, 38 (3),1-7.

9.杨必成.一个涉及多重可变上限函数的半离散Hilbert型不等式.东莞理工学院 学报,2021, 38(5),1-8.

10.王爱珍,杨必成.非齐次核半离散Hilbert型不等式的等价性质.东莞理工学院学报,2021, 38(5),9-13.

11.辛冬梅,杨必成,闫志来.具有一个导函数的 Hardy-Hilbert型积分不等式.吉林大学学报(理),2021,39(6),1380-1386.

12.吴善和,黄先勇,杨必成.一个涉及多重可变上限函数的半离散Hardy -Mulholland 型不等式.华南师范大学(自),2022,54(1),100-106.

13.王爱珍,杨必成.一个新的涉及高阶导函数的半离散 Hilbert型不等式。吉林大学学报(理),2022,60(2),240-246.

14.辛冬梅,杨必成,一个加强的 Hilbert型不等式。五邑大学学报(自),2022,36 ,63-67.

(3)参编论文(2本含4篇):

1.Trigonometric Sums and Their Applications (Ed. Andrei Raigorodskii, Michael Th. Rassias),Springer, 2020.

(i)Michael Th. Rassias, Bicheng Yang, On a Half-Discrete Hilbert-Type Inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta function. (ii) Bicheng Yang. Equivalent conditions of a reverse Hilbert-type integral inequality with the kernel of hyperbolic cotangent function related to the Riemann zeta function.

2. 不等式研究(三),哈尔滨 工业大学出版社,2022.

(iii)杨必成。关于一个加强逆向的 Hilbert型不等式。

(iv)杨必成。一个加强逆向的 Hardy-Littlewood-Polya 不等式。

专著(5本):

(1)Bicheng Yang, Jianquan Liao. Parameterized Multidimensional Hilbert-Type Inequalities (40万字),Scientific Research Publishing, USA 2020.

(2)Bicheng Yang, Jianquan Liao, Ravi P. Agarwal. Hilbert-Type Inequalities: Operators, Compositions and Extensions (45万字), Scientific Research Publishing, USA 2020.

(3)杨必成,黄启亮。Hilbert型不等式。(约16万字),哈尔滨工业大学出版社,2020。

(4)Bicheng Yang and Ricai Luo. Hilbert-Type and Hardy-Type Integral Inequalities in the Whole Plane . Scientific Research Publishing, 2022, USA.(中译题目:《全平面的Hilbert型不等式》)

(5) Bicheng Yang and Michael Th. Rassias。On Extended Hardy–Hilbert Integral Inequalities and Applications。World Scientific Publishing Co. Ptc.Ltd.2022, Singapore.(中译题目:《论推广的Hardy-Hilbert积分不等式及应用》)

二.媒体褒扬 (27项)

1.2020年1月,入册《祖国赞歌(第二卷)》(326-327页),并编入该书唯一封 面人物 (中 国文联出版社,刘旭东主编)。

2.2020年4月,入册《中国影响力人物》(90页)(中国未来研究会科技分会编)。

3.2020年8月15日,获汕尾中学“鸣谢”牌匾(捐赠5万元予“汕尾中学2020 高考优胜奖”10人).

4.2020年10月25日,《汕尾日报》載文《自由探秘 成绩雯然——记创立Yang-Hilbert型不等式理论的杨必成教授》,《今日头条》转载。

5.2020年10月21-22日,《今日头条》转载《杨必成教授在汕尾中学120周年校庆大会上的讲话》及《贺杨必成教授七十四寿诞:诗及花絮》。

6.2020年11月2日,《中国改革报》載文《砥砺前行,探秘洞悉数学堂奥——记创立Yang-Hilbert型不等式理论的杨必成教授》。

7.下面为转载《中国改革报》上文的21个网站(2020.12.24):

人民日报 中华 科技中国 凤凰 新闻100 新浪 创头条 中国教育文化 搜狐环球 中国发展报道 创始人联网 中信网 数字e家 知乎 今日头条 朝闻天下中国发展产业研究网 哔哩哔哩 市场导报 东方今报 。

8.2020年12月,《海丰乡音(第29期)》杂志載文:《砥砺前行,探秘洞悉堂奥 ——记创立 Yang-Hilbert型不等式理论的杨必成教授》(建成文).

9.2021年1月6日,《盘点2020年数学家杨必成教授成果篇》一文在下列20家 :

媒体发布:人民政协 中国科学 华夏访谈 媒体中国 朝闻天下 凤凰新闻 中国发展报道 广东广播电视台 创头条 中国信息 中华人物榜 哔哩哔哩 百度百家 12小时新闻 中国创投 民族品牌 博客中国 科技中国 搜狐 东方工匠。

10. 2021年1月10日《今日头条》(诗文寻真)載文《汕尾轿子杨必成总结年度科研成果,汕尾名医、诗人吕烈题诗祝贺》。

11. 2021年1月5日。获聘为“中国未来研究会科技分会第四届理事(2021-2025)”证书。

12. 2021年3月8日,《自由探秘 成果斐然— 记创立Yang-Hilbert型不等式理论的杨必成教授》发表于下列24家网站:

中国访谈 中国科学 中华 创头条 网易 中国快报 新华热线 中宏新闻 凤凰 中国教育文化 第一科技 中国财经 朝闻天下 创始人联网 中国教育新闻 新浪 人民观察 百度百家 简书 法治与社会 科技观察 中青新闻 中国信息 中讯网。

13. 2021年4月7日,《“寒门”是如何出贵子 —记革命伉俪杨耿仪郑芸的育儿之道》,发表于下列24家网站:

中国访谈 中华人物榜 今日头条 网易 中国教育科学 朝闻天下 媒体中 腾讯 中华网 华夏小康 凤凰 华夏文学 知乎 幸福生活 国企网 央视在线 朝闻天下 中红网 创头条 法治与社会 百度百家 中国教育文化 新浪 新时代人物。

14. 2021年4月,入册《走近大国倔起的开拓者》(80-81页)(中国未来研究会科技分会编).

15. 2021年8月20日,《我是科学人》栏目视频:“杨必成:执于探微,不负数学一生”上挂7家网站:人民日报 央视频 腾讯 优酷 爱奇艺 bilibili 微博。

16. 2021年8月30日,《中国数学家杨必成 执于探微 不负数学一生》挂23家网站:

人民日报 中华网 中国访谈 中国教育 新浪 中国信息 网易 第一资讯 百度 百家 第一资讯 中新资讯 中华新闻网 国际新闻网 科技焦点网 中国焦点网 每日资讯网 大众导报网 前沿科技网 中华科技网 中国城市网 每日财经网 广东新闻网 中国教育新闻网。

17. 2021年9月18-19日,杨必成应邀参加了在“北京会议中心”举行的“第十九届中国科学家(国际)论坛”,荣获大会组委会等颁发的《“十四五”科技强国创新驱动领军人物》证书及奖牌。

18. 2021年9月21-22日,汕尾电视台报道:《杨必成:白首穷经,忘我求知的数学家》。

19. 2021年10月19日,《我是科学人》栏目视频:《杨必成:执于探微,不负数学一生》获挂2网站:学习强国,西部影视。

20. 2021年12月16日,《数学家杨必成的“老三届”情结》刊載如下21个网站:

CCTV华夏之声 中国高新科技 今日头条 凤凰 科学头条 中研科技 中华新闻网 中国快报网 前沿科技网 科技焦点网 搜狐 中国教育新闻 中国焦点网 中新资讯网 中华科技网 经济周刊 第一资讯网 新浪 腾讯 百度百家网易。

21.2021年10月,《执于探微,不负数学一生——访广东第二师范学院应用数学研究所所长,教授杨必成》入册《中国力量》(528-536页)(中国文化交流协会编,光明日报出版社出版)。

22. 2022年2月16日,“杨必成:疫情中的2021盘点”刊載如下28个门户网站:人民日报客户端 CCTV华夏之声 中国战略产业 中华网 中研科技 中华新闻 前沿科技 百度百家 中华科技 中国看点 中国快报 中国城市 国际新闻 科技焦点 经济周刊 中国教育之家 中国焦点 前瞻科技 中国文化 中新资讯 爱科学 中国晨报 科技周刊 每日资讯 中国教育新闻 第一资讯 广东新闻 中国高新科技。

23. 2022年4月,入册《聚焦新时代的中国学者》(72-73页)并获该书特邀编委(中国未来研究会科技分会编)。

24. 2022年9月,《宝剑锋从磨砺出---记汕尾籍数学家杨必成教授》刊于《时代潮人》2022,2:35-41.

25. 2022年9月,《宝剑锋从磨砺出---记汕尾籍数学家杨必成教授》经下列25个网站转载:

中国高新科技 中国焦点日报 中国产业新闻 东方工匠 网易 简书 今日头条 知乎 UC头条 华人号 财经参考报 中国文化 豆瓣 中国西南新闻 中国看点 南方头条 搜狐 CCTV华夏之声 新时代先锋 中国双创 新浪宝剑 腾讯 中国小康新闻 百度百家 新时代人物

26. 杨必成入册于2022年10月10日发布的斯坦福大学版“全球前2%顶尖科学家”的“终身影响力排行版(1960-2021)”榜单。

27. 2022年10月,文《执于探微,“数”写精彩人生——记广东第二师范学院应用数学研究所所长杨必成教授》入册《喜迎二十大 奋进新征程》一书(153-154页。中国人文科学出版社).

三.吕烈新曲及附注

2022年10月16日,杨必成教授同窗好友吕烈医师作曲如下:

[中吕__魔合罗带过最高楼]

祝杨必成教授获全球前2%顶尖科学家殊荣(注1)

少年未得东风便(注2),青灯破万卷(注3)。

十年冷凳磨穿(注4),一身壮志痴缠(注5)。

勘开参量风云转(注6),旱地掘穿甘露泉(注7)。

文章如井喷,论著忽等身(注8)。

[最高楼] 仰看前路山尖,绚丽辉煌迫近。

回观撒下花籽,五彩缤纷一片(注9)。

注1. 2022年10月10日,杨必成入册美国斯坦福大学John P.A. Ioannidis 教授团队发布的“全球前2%顶尖科学家”的“终身影响力排行版(1960-2021年)”榜单。

注2. 1958年后,杨必成因受父亲历史寃案所累及文革災祸,求学之路一波三折,下乡时险遭雷击致死,身心倍受创伤。

注3. 杨必成下乡时竟自学了《微积分》,练就一身“杀龙”本领。

注4. 从1958入读初中到1998年升任教授,杨必成整整坐了40年冷板凳。

注5. 杨必成一生沉迷于数学梦中,天天思考数学问题,以至不能自拔。

注6. 1998年,在头痛病痊愈后第4年,杨必成突发奇想,引入独立参量,在美国数学家帮助下,在国际上发表了推广希尔伯特积分不等式的研究论文。

注7. 之后多年,杨必成的发表成果终于填补了该领域60多年的理论空白,创立了杨一希尔伯特不等式理论 (《科技日报》2013年语)。

注8. 杨必成至今己发表数学研究论文580多篇,出版论著13部,参编专著17部(20章),总字数超过一千万字。

注9:吕烈注:杨教授建立数学研究所,培养了一批批的数学人材,写下多篇高质量的论文,被国內外发表推介,多人因此而评上教授。

总注:获入册全球前2%顶尖科学家榜单随想。

荣幸。逆境图存,呕心枥血, 四十年磨一剑,入围榜单值得!

有憾。这次,杨必成仅有241篇国外发表论文获参评,有300多篇发表在祖国大地的中文论文,13本中英文专著及18本参编专著成果未获参评,故所得评分不够理想。

无悔。自发表数学论文至今30多年来,杨必成既不把论文及专著全写在国外,也不全写在国内,然而第一篇重要论文及第一本专著却发表在国内,这一做法适合于他一生的科研抉择!

杨必成胞弟杨建成点赞:这次中国入选数学家144人,中国人口14亿人,平均每一千万人中才有一人上榜。数学家杨必成的入选,是我们杨氏家族的光荣与骄傲。

附:杨必成教授个人简历:

杨必成,男,1946年8月出生于广东汕尾市城区,1966年6月毕业于汕尾中学高中,1968年12月下乡到海丰公平公社当知青,1975年12月回城当民办教师,1977年底以数学满分(200分)的高考成绩入读华南师范大学数学系本科班,1982年1月大学毕业,获理学士学位,分配到广东教育学院数学系任助教。他长期从事函数论的教学与研究,于1998年评为数学教授,曾任广东教育学院数学系主任(1999~2007年)兼学院党委委员,全国不等式研究会理事长(2009~2013年),现任广东第二师范学院应用数学研究所所长(2006年至今),兼任全国不等式研究会顾问,中山大学国家数字家庭工程技术研究中心兼职教授,汕尾中学广州校友会会长(2019年~)。多年来,他被聘为多家国际数学杂志编委,及美国《数学评论》、德国《数学文摘》评论员。

他于1986年开始发表数学论文,至今一直从事可和性,算子理论与解析不等式理论的基础应用研究。1998年,他在国际SCI数学期刊《数学分析及应用(JMAA)》发表论文,引入独立参量,推广Hilbert积分不等式;他还在《美国数学会会刊(PAMS)》发表论文,建立加强型的Hardy-Hilbert不等式,其最佳内常数因子联系Euler常数;2004年,他引入两对共轭指数辅以独立参量,首倡参量化数学思想方法,建立推广的Hardy-Hilbert型不等式及其算子刻画理论,即Yang-Hilbert不等式理论(《科技日报》2013年语),解决了Hardy-Hilbert型不等式理论的推广难题,填补了该领域60多年(1934-1997年)的理论空白;2016年至今,他与团队成员一起努力拼搏,建立起12个门类Hilbert型不等式最佳常数因子联系多参数的等价陈述,从而完善了Yang-Hilbert不等式理论。应用上,他创建了大量Hilbert型不等式,使其最佳常数因子联系上著名的Reimann -zeta函数,丰富了Reimann-zeta函数的理论内涵;他还应用改进的Euler-Maclaurin求和公式,建立新型的联系部分和的Hardy-Hilbert不等式,并拓展到创建多类半离散及积分型不等式中去。杨必成业已在国内外数学期刊发表论文560多篇(其中195篇为SCI收录,17篇刊登在《数学学报》、《数学年刊》、《数学进展》等中文权威期刊上),并在中国科学出版社及国外Springer等科学出版社出版专著13部。此外,他还参编Springer等出版社出版专著18部,含22章理论内容。

2002年,他应邀参加“2002-国际数学家大会”(北京),获15分钟发言;2008年,他应邀参加“第五届非线性分析国际会议”(美国),获45分钟发言。他曾连续13次获广东第二师范学院“科研贡献奖”(2003~2015年);据《2009年版中中国期刊高被引指数》一书记载:2003-2007年发表论文于2008年引用频次,全国数学类前20名排名,杨必成名列第二;2007年底,他被广东省教育工会授予“广东省师德先进个人”荣誉称号; 2010年,“美国国际传记中心”授予他“2010年度世界风云人物”纪念金牌;他的科研事迹2次入编《中华人民共和国年鉴(2013, 2018年卷)》; 2014年,他被评为“汕尾当代名人”;2015年,他荣获“科学中国人2014年度人物奖”,“2015年度中国科技创新突出贡献人物奖”,及“2015年度中国教育创新创业领军人物奖”; 2016年,他的事迹获入编新版《世界名人录(第三卷)》;2016年3月,他获英国剑桥国际传记中心颁以“Most Influential Scientists of 2016”(2016年度最具影响力科学家)银质奖盘;2017年2月,他获英国剑桥国际传记中心颁以“Leading Scientists of the Word~ 2017~”(2017年度世界顶尖科学家)荣誉证书;2019年获“建国70周年 中国科技创新杰出人物”证书;2021年,杨必成参加第十九届中国科学家论坛,被授予“十四五”科技强国创新驱动领军人物”荣譽奖牌;2021年10月,科技部 “我是科学人”栏目组,录制了介绍数学家杨必成教授的采访视频,挂上了《学习强国》等网站。最近,杨必成教授入册于2022年10月10日发布的斯坦福大学“全球前2%顶尖科学家”的“终身影响力排行版(1960-2021)”榜单。

2005年至今,《人民日报》、《科技日报》、《祖国》、《汕尾日报》及《中国科技网》等100多家报刊、杂志、网站陆续报道了他的科研业绩。

杨必成教授的座右铭是:“志存高远,脚踏实地,勤勉治学,执于探微”。

免责声明:市场有风险,选择需谨慎!此文仅供参考,不作买卖依据。

关键词:

来源:今报在线
编辑:GY653

免责声明:本网站内容主要来自原创、合作媒体供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

  • 相关推荐

相关词